

PROJECT: Bank Forty Westland Hydrologic Characterization BORNING LOCATION: Agustian Resources 1 OF 1 PROBING LOCATION: 45.4542/1727 N. 87.82527978" W See soil boring location straving ELEV: BORNING DEPTH: 5.5 BORNING D			*********						80%	NO.:	171	80.G	2,5	
BORING LOCATION: #5454521728" N. 57.82527978" W. See soil boring location drawing. ELEV: BORING SCATTOR: Service Mand Auger DRILL CREW: M. Graham / J. McDensid / S. Schwartz BRILLING METHOD: DATE STARTED: Servit DATE COMPLETED: 5/817 REVIEWED BY: M. Gotham DATE: 6271/17 DATE COMPLETED: 5/817 REVIEWED BY: M. Gotham DATE: 6271/17 SAMPLE SAMPLE SOIL DESCRIPTION SOIL DESCRIPTION OFF) PEAL DOCK, Service, serm-samzered OFF) PEAL DOCK, Service, service, service, service, service, service, service, service, service	PROJ	ECT: Bar	k For	to Wi	etian	d Hydrologic Characterization							rellinoon.	
PRILLING METHOD: DRILLING METHOD: DOTTO MATERIAN STATE DATE COMPLETED; SIR17 REVIEWED BY: M. Gotham DATE: SATIFF HOLE CLOSURE: Placement related. See installation diagram. SAMPLE SAMPLE SAMPLE SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION OFF; PEAL Book, Revox, serie-situated OFF; PEAL Book, Revox, series OFF; PEAL Book, Re														
PRILLING METHOD: DRILLING METHOD: DOTTO MATERIAN STATE DATE COMPLETED; SIR17 REVIEWED BY: M. Gotham DATE: SATIFF HOLE CLOSURE: Placement related. See installation diagram. SAMPLE SAMPLE SAMPLE SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION OFF; PEAL Book, Revox, serie-situated OFF; PEAL Book, Revox, series OFF; PEAL Book, Re	BORI	NG LOCATI	ON:	45.4	5421	723" N. 87.82527978" W - See soil boring to	atío	n drawin	a a	ELE	iv.:			
DATE STARTED: SIGNIT DATE COMPLETED: SIGNIT REVIEWED BY: M. Gotham DATE STARTED: SIGNIT DATE COMPLETED: SIGNIT REVIEWED BY: M. Gotham DATE STARTED: SIGNIT STARTED: SIGNIFICATION OF STARTED: SAMPLE STARTED: SAMPLE STARTED: SAMPLE SAMP														
DATE COMPLETED: 5(9)17 DATE COMPLETED: 5(9)17 REVIEWED BY: M. Gotham DATE: 6(21)17 HOLE CLOSURE: Pleasonesee Installation diagram SAMPLE SAMPLE BY SAMPLE BY SOIL DESCRIPTION OFFIEAL block, \$finous, series-subscription OFFIEAL block, \$fi														and and
SAMPLE SAMPLE SAMPLE SOIL DESCRIPTION OFFI PEAL Body, Strong, Service,						DATE COMPLETED: 5/9/17 REV	EWE	DBY: N	f. Gotham	ĎΑ	TE:	6/21/	17	
SOIL DESCRIPTION Nat Comments 1														Output of
1.0 0 077 (SEAT, DAVE SAME STORM OF STO			******	I	-		щ			L	TES	TRE	SULT	S
1.0 10 10 10 10 10 10 10	NUMBER	SPT VALUES BLOWS/6"(N)	RECOVERY	CEGEND .		SOIL DESCRIPTION	WATER TABL	ELEV. (FT)	COMMENTS	-4	MOUSTURE CONTENT (%)	il Pl		940 940 940
SECIOL SAMPLY SAMPLY CRISTANDS Brown 1.5	1		1.0	1	0	(PT) <u>PEAT</u> , black, fibrous, semi-eaturated	I		Philippin and Complete yes D-SD to	1		-		
1.0	2		1.0	n de la companie de l	1 -	(SCCE.) CLAYEY SAND CREGNESS brown (7. DYR AZ). Inne, frace charges graves, high- planticity, seens-assurant, and 1.2 SPSM SETY SAND. 10YR SR, with fine and control coarse. With propriation, solurated topics.			TO AND					
4 1.0 15/9/34) <u>811 V. SAMD.</u> DR 40.1 fines, with codense 5 1.0 4 Personal State Code S	3		1.0	Stationary and State of State		(SPSC) CLAYEY SAND 10% codated motion (10YR 5.6), 10% gleyed (P10Y), (SPISC)(10YR 46% from Increased catalysted with planticly			3					
1.0	4		1.0			(SP/SM) <u>Sic TV SARE)</u> , 10R 4/3, fine, with coarse send, enturable, slight planticity.			*					
6 0.5 CSPSICS SEATER SEASO, 2.5V 4/3, time, wide: Designs evens: Haved defilling 5.0' to course and fine grand with course wand, 5.5' course country contract and fine seasons of course country.	5		1.0	шийвойвищуют	4 -	4.2 (SPSC) CLAYEY SAND, 2.3Y 4/3, fine, with course gaster, 2% organic motives, black to charcosi, course black tragetients (few), saturated			111111111111111111111111111111111111111	-				
5.8/	6		0.5	The second	5	(SP/SC) CLAYEY SPIND, 2:5Y 4/3, fine, with tourse and fine provide with course sand.			Distinct reser: Hand drilling 5.0' to 5.5'					

Soil Boring PZ-14A is ion WL B3.

SB-1 should be from near PZ-1/1A

Comments on Wetland Watershed Budgets

- The wetland watershed budgets presented used data collected from NOAA and NRCS and are not unique to the site. Two
 years of meteorological data has been collected onsite and was included with the Part 632 application, but was not used
 as either a parameter or to verify the offsite data.
- Wetland watershed budgets should typically represent wet, dry and average years. The data used represents a mean
 monthly average. This does not provide representation of annual or monthly precipitation variation and is less predictive
 of hydrological fluctuations during the growing season.
- This water budget assumes that each wetland has unlimited storage capacity and that water accrues within a wetland until the water infiltrates or exfiltrates. The budget fails to recognize that most wetlands have a natural outlet. WL B1/B2/B4L discharges through a perennial stream, which dips underground at the sandstore pinch-out and reemerges before discharging into the Menominee River. WL C1/40/41 discharges through two streams directly to the Menominee River. WL 6 channelizes before dipping underground at the sandstone pinch-out. WL 2B/A3/A1 channelizes and flows south to the Shakey Lakes system. WL 14/14a/15 bas evidence of channelization but is alsotroically disturbed to the extent that the natural discharge point is poorly defined. Each onsite wetland complex demonstrates that it is a discharging system.
- Monthly infiltration/ exfiltration rates. The notes indicate that these rates were determined from slug tests that have been conduced onsite. To our knowledge, there have been no slug tests that have been conducted for wetland values; slug tests have been conducted in upland areas. The infiltration rate is a constant throughout the year, which does not factor in frozen soils when infiltration does not occur and higher infiltration rates in much of the growing season when the water table is likely below the soil surface.
- Using a wetland watershed contribution runoff coefficient that is applied to the total monthly rainfall is not appropriate.
 It is recommended that the NRC's TR-5's method is used to determine runoff created by individual rainfall events over a specified value based upon watershed contribution, land cover, and soil types.
- The wetland watershed budgets assume that two weeks of soil saturation during the growing season is sufficient to
 support the existing wetland community. This assumption is unsupported. The existing wetland community relies on the
 existing hydrologic regime within the watershed. Alterations to the existing watershed budget may constitute an impact.
 The applicant should have a baseline of the hydrologic and environmental (climatic, chemical, etc.) conditions that
 support the existing community and provide an assessment of the changes to the baselines conditions and conclusion of
 impacts.

Indirect Wetland Impacts

While the overall wetland water budget indicates that there is sufficient runoff and precipitation to support a wetland (Figure 5-57 and Figure 3, MDEQ Response March 2018), our assessment indicates that there may be a localized alteration of wetland hydrology adjacent to the pit. The indirect wetland impacts assessment indicates that approximately 6.18 acres will be impacted based on proximity (Table 5-2). The impact to wetland hydrology will be due to altering the size of the watershed from 57 acres to 36 acres.

Questions...

- What is "proximity"? How was the threshold for "proximity" impacts decided?
- How does the location of River Road effect the existing hydrology of the wetland? The watershed area that is defined on figure 5-18 currently does not support wetland 14 with surface water inputs.
- If the impact to this watershed is due to alteration of the size of the watershed from 57 acres to 36
 acres, what about other wetlands that lose a comparable percentage of their wetland watersheds?

Conclusion presented by Foth in document sent to Kim on 3/16.

Wetland complex	Wetland acreage	Existing contributing upland drainage	Operations Contributing Upland Drainage	Charge in wetland area	Operations watershed remaining	Proposed impacts flydrology and proximity!
2b	6.12	108	19	0	0.18	1.88
14	6.15	56.7	36.3	0	0.64	6.28
40/41	1.08	36	23	0	0,64	(
A1	1.9	57	12	0	0.21	1.93
A3	1.5	113	55	0	0.49	1.52
B1	4,49	124	83	0	0.67	1.34
81c	0,83	46.6	28	0	0.60	0.22
C1	4.2	92	21	0	0.23	4.16

Wetland 14/14a/15b

River Road is a barrier to surface hydrology. No evidence of adequate equalization through River Road. How does the wetland watershed portrayed in this figure support WL-14?

This figure represents the location of the piezometer nest in relation to the groundwater table.

PZ1/1A is shown on Table 1 (In March response) as a target for the groundwater model calibration. It is also shown on Figure 4-4 (Updated) as having a residual.

PZ-1/PZ-1A is shown on the cross-section contours for P-P'; however, the location of PZ-1/PZ-1A is off-set and is represented in cross-section as being in WL-14. Figure 5-56 states that the piezometer is off-set but shown in the correct location. This is the incorrect location of the piezometer since the purpose of cross-section (P-P') is demonstrate the groundwater elevation at PZ-1/PZ-1A in comparison with the modeled groundwater elevation (aka regional groundwater table). This slide shows where the location of PZ-1/PZ-1A would exist if it was located on the P-P' cross-section. The following slide shows the onset location of the piezometer relative to the cross-section and representation of the groundwater model.

This slide shows cross-section P-P'. Note that on this slide, PZ-1/PZ-1A is shown in WL-14. However, this is the incorrect location. The P-P' cross-section if significantly off-set from the actual location of PZ-1/PZ-1A. If you follow the elevation contour on the previous slide, the piezometer nest is located between in about the middle of WL-15. This slide shows approximately where the piezometer nest would sit relative to the regional water table if the piezometer nest were accurately represented on the cross-section. If the piezometers were accurately represented on the cross-section, we would have a better representation of the water table elevation that is both supported by the calibrated targets, piezometer data and the residuals.

This slide shows cross-section P-P'. Note that on this slide, PZ-1/PZ-1A is shown in WL-14. However, this is the incorrect location. The P-P' cross-section if significantly off-set from the actual location of PZ-1/PZ-1A. If you follow the elevation contour on the previous slide, the piezometer nest is located between in about the middle of WL-15. This slide shows approximately where the piezometer nest would sit relative to the regional water table if the piezometer nest were accurately represented on the cross-section. The distance to the modeled water table at this location is comparable to the residual in the model of 11.45 feet. I believe that if the piezometers were accurately represented on the cross-section, we would have an accurate representation of the water table elevation that is supported by the calibrated targets, piezometers and the residual.

The soil boring shows that the area above the residual to ground surface is saturated sand.

There is no evidence of a restrictive feature in the soil boring or data forms.

The calibrated target values for the ground water model were created by averaging the minimum and maximum elevations recorded at monitoring wells, piezometers and soil borings within and near the project site. The values represented in this slide are the differences between the minimum and maximum recorded elevations at some of the monitoring wells located on the project site. Data taken from Table 1, Groundwater Model Target Calibration Points and Values, from the March 8 response to clarification and amplification.

The values represented on this slide have more than one season of target data, and they include collection during the growing season which represents seasonal variation in the water table. All of these targets were collected from the Quaternary. Several of the target locations that we are interested in, such as FMW-05, FMW-08, PZ-1A, PZ-5/PZ-5A do not have any data collection periods during the growing season. This range of elevation is well within the fluctuation zones of what would impact wetland hydrology.

This figure was included in the January 2017 submission, the previous wetland application submission and in the 632 application. This shows a cross-section that incorporates that actual location of water table.

Also, of note, is that Figure 3-6 shows that the Precambrian layer (bedrock) sits at 705.38 feet at PZ-1/1A. By asserting that the groundwater elevation at PZ-1/1A is at 697.5, it is also saying that all of the groundwater is flowing through the Precambrian and not through the alluvium.

PZ-1/ PZ-1A and represents the location of the water table that is supported by the conclusions of the previous slides.

	(7						Table 4-1						
					W	etland Water Balan	ce Analysis, Cu	rent Conditions					
Westend ID	Westand Area	Water Source ³	Watershoot Area (ac)	Watershed Ares Removed from Tributary Contribution (44)	Pexcent Original Watershed Area Lost (%)	A _n , Not Watersholl Acea: Exfloracy Watersholl Acea minus Weshand Axea (ac)	Runoff to WL (PPT-RCH-ET)*(A _n) (D ² (Ss) ¹	Precipitation Directly on WL (B ² cm)	Wetland Seepage to Groundwater (M ² /Sr) ²	Geostadirates Seepage to Westund (tf.)ves ¹	Evaporation from WL (90%)	from WL	Water Supply to Wednest so Percent of ET
WL-H3	0.49	Surface Water Dosinistes	3.42		nontricularida consti	tentrikommologijatenskim Liji	18-65	3£+68	TEXM	Zero. Wettind is Percland	muning galantees	\$E+04	506%
WL-Bic	0.7	Storface Water Donaisates	46.6		0%	45.9	12-46	8E+04	75-04	Zero. Wetland is Penitted	18	5E+04	2345%
BL-4541	13	Statlice Water Dominates	22.57		0%	31.29	3240	1E-05	3£+04	Zest. Wetland is Perched	ts	XE+64	665%
WLCI	341,23	Mored (Greenshwater and Sarther Water)	1807.98)	0%	1295.65	18:407	6E+07	GE-00	82-06	IB	X-67	309%
WESTALIAN	281.38	Mined (Geologicales and Surface Water)	774.6		66%	\$45.62	18-07	SE+07	35-08	(E-6)	18	96:37	3694
m'yr + iaches pe ET + e'rapotrans	n yes n yese gelatios				Wetlan	nd Water Balance <i>i</i>	Table 4-2 Analysis, Peak G	perating Conditi	ons				
m/yr ≈ faches pe E3 ≈ e/sgodean	v. yest	· · · · · · · · · · · · · · · · · · ·		Watershed Area Respond	Percent Original	An Not Weterched Area: Traineasy Waterched	Analysis, Peak C						
Ef = etapotein	v. yest	Wass Source ²	Watershed Area (ac)		Percent	A., Not Weterched Area:	Analysis, Peak C	Precipitation Directly	Ons. Westend Seegage to Geologististes	Groundwaier Seigage to Welsind (17 ⁸ 78) ⁴	Evaporacion from W1.	Exaperado From WL Or 'M'	to Wedner
ET ≈ ctospoteine Wetfered ID	t year galation Westend Area	Watte Source ² Surface Wate Surface Wate	Area	Area Restored from Tributary Countibution	Percent Original Watershed Area Lesi	A ₆ , Not Waterthol Area Tributary Waterthol Area major Wesland Area	Resoft to WI.	Prorigination Directly on WL	Wedand Seepage to Groundstates	Wetland	from W.	from W.L.	to Wedner
Wedaed D	n year printiesi Westand Area (87)	Sugface Water	Area (ac)	Area Removed from Tellonary Contribution (ac)	Percent Original Watershed Area Loot (%)	An, Not Winterched Area: Tribipoury Waterched Area many Wetland Area (to)	Resoft to WL.	Proxipination Directly on W3. (ft ² /yr)	Washing Serguage to Groundtrates (8 ² 731) ²	Westand (str ² /yx) ² Zero:	from W.L. (06/yr)	from W.L.	to Wetland Percent of 500%
Wedard ID	n year printing Wednard Area (84)	Surface Water Dominates Surface Water	Area (ac) 3.42	Area Respond from Telémeary Countries (hc)	Percent Original Watershed Area Lord (%)	A _n , Not Weterthed Area Tributary Waterthed Area minor Wetland Area (ac)	Resoft to WL (PFT-ECE-LT)*(A _J (B ² -O)*	Proceptionion Directly on WE. (R ² /Nr) 5E+04	Westland Seepage to Groundensee (M ² /37) ² 18-64	Wetland (dr ² (yx) ² Zero Wetland is Perched Zero	(00 yr) (30 yr)	front WL (B ² /yr) 12+04	to Wetlage Perceiar of 500%
Wedned ID L-B1 L-B1c	Weshand Area (343 - 0.4	Surface Witer Dominates Surface Water Dominates Surface Water	Area (ar) 5.42 46.6	Area Restroyed from Tellmany Contribution (ac)	Percent Original Watershed Area Lest (%) Original	An Not Waterthiel Area Tribonary Waterthiel Area major Wetland Area major Wetland Geld 3937	Remote to WT. OPPERCEATIVE, OPPERC	Procupleation Directly 60 WE 60 F/Sr) 32-04 82-10	Wedaud Seegage to Grossdrates (K'193) ² 18-04	Wetland (df*)yyf* Erro: Wetland is Peoclard Zero: Wetland is Peoclard	(30% WL (9677) [8]	from WL (W/5x) 32-04 (E-0x	to Wedness Percess of 500%
Ef = evigotein	Westand Area (84) 3 44,23 54	Surface Water Dentisates Surface Water Dominates Surface Water Dominates Surface Water Control (Communicates)	Asea (ac) 5.42 46.6 22.57	Area Removed from Tribucary Consistent (8c) (0)	Percent Original Watershed Area Leet (%) Original 25%	A _n , Not Westerfield Arek Tribusary Westerfield Area tokes; Westerfield Area (48) (48) (49) (50)	Rapolf to WI. (PFI ECRITY (A)) (B ² -97) (R-97)	Procupitation Directly on WL (Rf 'NT) 35-06 80-04	Westland Serguage to Georgedineter (M'94) ² 18-04 28-04	Wetland (At 1/2x)2 Erro. Wetland is Peoched Zero. Wetland is Peoched Zero. Wetland is Peoched Wetland is Peoched	(06-72) (06-72) 18 13	front Wil. (B*)913 32-004 32-04 32-04	to Wedness Percess of 500% 1834%

At some place, the GW elevation has to go up.

Cross-section is off-set from PZ21/21A in WL-40/41 and FMW-07

Impact Assessment of Groundwater Drawdown

Wetland C1

The surface water hydrology in this wetland is dependent on groundwater and surface water (precipitation and runoff) and is considered a valley bottom wetland. The impact assessment determined that the dewatering operation will have an adverse impact on surface water in approximately 4.16 acres of this wetland. The following information (Updated Figures 5-45 to 5-47 and New Figure 1), was used to determine the extent of the impact to wetland hydrology:

Wetland A1

The surface water hydrology in this wetland is dependent on groundwater and surface water (precipitation and runoff) and is considered a valley bottom wetland. The impact assessment determined that the dewatering operation will have an adverse impact on surface water in approximately 1.93 acres of this wetland. The following information (Updated Figures 5-48 and 5-49) was used to determine the extent of the impact to wetland hydrology:

A clay layer was documented at PZ 21-21A but not at PZ 20/20A or PZ 6/6A.

								Table 3-1 Wetland Impact Sun MDEQ Wetland Permit A Ha Resources Inc. – Baci October 16, 201	pplication (Forty Project					
dusite Regulated	Total Solversed	•	Vertaset Star	Więktu Pr	njest Bouis	dary		Proposed Wesland Direct	mpaces ²	Propered Wetland	Tetal Preposed	Total	Linguiers by West (acres)	and Type
Westand ID	Wednest Size (Astron	Arex (acres)	Max Longth (feet)	Max Width (feet)	Max Bepth Heec	Average Depth (feet)	Acreage	Fill or Excavation Volume	Cross Section Denni Location in Project Plans	Tadirect Empacts ² (acres)	Wedland Empaces ² (acres)	PEM	PSS	250
WL-14	9.55	6.15	987	762	3.5	2.0	0.15	1,980 CV Excentation (0.13ac)	Eigue 4-5	6.13	6.28	henrosonnon		6.28
WL-14a	9.16	0.16	205	116	1.9	0.5			-	0.03	9.03			0.03
WE-150	3.38	2.24	968	260	2.5	2.0	2.24	906,506 CY Excavation (2.24ac)	Figure 4-5	-	2.24	1.13		1.71
WL-BI	4.49	3.02	1881	-480	2.0	1.0	1:17	85,740 CY Fitt (1.17ac)	Figures 4-6 and 4-9	5. X4	2.90			2.35
WL-52	8.16	0.19	206	33	\$.G	0.5	0.10	13.362 CV Fill (0.39sc)	Figure 4-13	, handarana	0.19		,	6.19
WL-Sir	0.82	6,22	216	168	0.5	0.5	0.16	2.651 CV F01 (0.16ac)	Eigure 4-10	0.06	0.22			0.22
WL-82	2.63	236	1066	323	2.0	1.0	2.83	425.886-CY F61 (2.85sc)	Figure 4-6	-	2.85	2.24		0.61
WL-6	493	1.33	1119	125	2.0	0.5	1.28	262.030 CW FoX (1.23ac)	Figure 4-S	9.10	1.93			1.53
WL-4x	1.80	1.56	630	518	1.5	0.5	1.79	820 CY Fig (0.03ac) 57.840 CY Escavators (1.76ac)	Figure 4-7	-	1:39	1.79	-	-
WLGc	1.49	1.46	718	589	1.6	8.5	1.46	12,990 CV Fill (0.28ac)	Figure 4-7		1.40	2.46		1
WL-A1	40.83	40.83	2018	1349	3.0	2.0				1.93	1.93			1.93
WLCI	10.56	15.84	2237	1373	2.0	1.0				4:16	4.15	4.16		
overeli de la companya del companya del companya de la companya de		constrainmen	Manager and	per consultation of	podentypepounce	Janearon popularion					CONTRACTOR OF PRODUCTION	000000000000000000000000000000000000000		marawayaya
WL-26	6.62	6.12	642	1117	3.0	1.5				1.85	1.98			3.00
WL-83	691	0.53	244	132	2.0	1.5							·	
W7,-40/41	1.88	1.08	697	117	1.0	0.5		-	-	-	· ·			-
Total	91.6	853		-	hala baanaan		13.2	980,839 CY Exceration (5.3sc) 803,453 CY Fili (5.5sc)	-	27.3	35.4	10.6	,	27.6
al Direct Welland al India est Wella al Wesland Impa	od Report":						11.7 17.3 18.4		Agreement Ann A Christia Ann an				Prepared by Checked by	
M = Palastine Em 6 = Palastine Sori O = Palastine Fore '= Cubic Yard (allabat 2018 bases)	b-slateb Westend ested Westend andresses Sort of th		(Állý svisten del apá by po				s conduced feet	SaSter Logarit II. salvantler seeni	organis) a served MCRC			;		

WL-C1 Lobe and WL-A1 West-North Lobe are predicted to experience a seasonal water level drop of anywhere from 20 inches to 25 inches that they do not experience under existing conditions. These indirect hydrologic impacts (alongside the impacts due to direct impacts) are summarized in Table 5-1 and on Figure 5-61, and equal 6.1 acres of wetland. None of the remaining wetlands showed a lack of spring surface saturation or a seasonal fluctuation that is any different than the existing condition of each wetland.

Accordingly, an indirect proximity impact was proposed if more than 50% of an existing contributing watershed area for any given wetland (or portion of any given wetland) becomes occupied by the project during operations. It should be noted that, although these contributing watershed areas are used to define 'potential indirect impacts due to proximity' (or indirect proximity impacts), the surface runoff that is associated with these contributing wetland watershed areas do not provide the sole source of water recharge to any wetland under consideration, as these wetlands also receive recharge from adjacent watersheds in the wetland complex through seepage and overland flow.

In any event, using the "50% criteria" for determining potential indirect proximity impacts, wetlands WL-14, WL-14a, WL-A3 Lobe, WL-2b Lobe, and small, on-site portions of WL-6, WL-B1c, and WL-B1 are more likely to be indirectly impacted. These impacted wetlands total 11.1 acres (Table 5-2 and Figure 5-62). Therefore, the total indirectly impacted wetland area, as determined by both hydrologic modeling and proximity criteria, would be 17.2 acres. None of the remaining wetlands under consideration would have more than 50% of its watershed removed, and in the case of each one, the respective hydrographs for each wetland show that there is ample water during springtime and little fluctuation during the remainder of the growing

Table 4-1 Aquila Wetlands Wetland Piezometer Water Elevations and Vertical Gradient Summary - 2017

Event Date:	Water Elev	ation (m msl)	Vertical Gi	adient (m/m)
Piezometer ID	7/6 - 7/10 2017	7/21 - 7/24 2017	7/6 - 7/10 2017	7/21 - 7/24 2017
PZ-06	222.73	223.00	-0.376	-0.207
PZ-06A	223.43	223.39	40.570	*0.207
PZ-20	226.21	226.22	0.011	0.009
PZ-20A	226.20	226.21	0.011	0.009
PZ-21	225.29	225.33	-0.180	-0.174
PZ-21A	225.59	225.62	*0.100	-0.174
PZ-22	223.76	223.77	-0.044	-0.034
PZ-22A	223.83	223.82	-0.044	-0.054
PZ+23	223.21	223.21	-0.046	-0.028
PZ-23A	223.27	223.24	-0.040	-0.028
PZ-24	220.87	220.87	-0.026	-0.010
PZ-24A	220.89	220.87	*0.026	-0.010

Piezometers from C1 complex. PZ-20 is from portion of WL-C1 that is overlying clay soils. PZ-21A is located at the far SW end (beginning of) WL-C1. PZ 22/22A and 23/23A are in WL 40/41.

In order from top to bottom: PZ6 (WL-C1), PZ-20, PZ-21 (WL-C1), PZ 22, PZ-23 (WL-40/41)

Table 4 Regional Water Table Drawdown Near Wetlands (MODFLOW)

Reference	Drawdown	Drawdown
Point ¹	(ft)	(m)
CI-a	1.75	0.53
CI-b	2.40	0.73
CI-c	1.25	0.38
C1-d	0.25	0.08
40/41-a	2.75	0.84
40/41-6	1.75	0.53
Bi-a	22.0	6.71
B1-b	3.75	1.14
В1-с	7.50	2.29
B1-d	12.0	3.66
B1-e	8.50	2,59
14-a	22.0	6.71
14-b	2.50	0.76
6-a	0.60	0:18
2b-a	0.25	0.08
AIWest-a	2.50	0.76
A1West-b	0.35	0.11
A1East-a	1.50	0.46
A1East-b	0.10	0:03

Prepared by: DRD Reviewed by: MAN

Figure 1 shows the groundwater table interpolated between measured groundwater levels at monitoring points FMW-05 to the south of WL-40/41, and the Menominee River to the north of WL-40/41. The water levels shown on the cross-section are summarized in Table 5. Updated Figure 5-40 shows groundwater contours in the vicinity of WL-40/41 that are based on the measurements in the monitoring wells (the closest of which is) FMW-05 and the Menominee River to which the groundwater frains. The groundwater level measurements shown on Updated Figure 5-40 are from December 2011, with the exception of a few measured data points from 2010 and 2012 to fill data gaps (as shown on the figure). The midpoints of the maximum and minimum groundwater level measurements at the points shown on Updated Figure 4-4 of the *Groundwater Modeling Report* (included with this response document) were used as calibration targets for the MODFLOW groundwater model and vary slightly from the December 2011 water levels shown on Updated Figure 5-40. The MODFLOW calibration target data is summarized in Table 1.

Where is the separation of the perched vs the groundwater driven portions of the wetland complex?